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Abstract

Self-attention models have emerged as powerful tools
in both computer vision and Natural Language Process-
ing (NLP) domains. However, their application in time-
domain Electrocardiogram (ECG) signal analysis has
been limited, primarily due to the lesser need for global
receptive fields. In this study, we present a novel approach
utilizing local self-attention to address multi-class clas-
sification tasks using the PhysioNet/Computing in Cardi-
ology Challenge 2021 dataset, encompassing 26 distinct
classes across six different datasets. We introduce an in-
novative concept called “local lead-attention” to capture
features within a single lead and across multiple config-
urable leads. The proposed architecture achieves an FI
score of 0.521 on the challenge’s validation set, marking
a 5.67% improvement over the winning solution. Remark-
ably, our model accomplishes this performance boost with
only one-third of the total parameter size, amounting to 2.4
million parameters.

1. Introduction

Cardiovascular Diseases (CVD) continue to be the lead-
ing cause of mortality worldwide [1], and it is of utmost
importance to provide timely and accurate diagnosis for
effective intervention and patient care. ECG monitor-
ing is the main component in the assessment of cardiac
health, providing detailed insights into the activity of the
heart. With advancements in computing technology and
the growing availability of digital healthcare records, ECG
data has become an essential resource for early detection
and monitoring of cardiac conditions. Contemporary ECG
algorithms heavily depend on deep learning technologies
to deliver precise diagnostics, often in collaboration with
human experts. The refinement of these algorithms holds
paramount importance as they pave the way for advancing
early prediction and treatment strategies for CVD.

This paper presents a solution to the PhysioNet/Computing

in Cardiology Challenge 2021 [2]. The top contenders of
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this challenge [3—5] show impressive scores on the leader-
board of this challenge on both the validation and test sets.
All these solutions use a convolution-only approach and
for the right reason — ECG signal processing does not need
the vanilla self-attention [6] module to achieve top scores.
There has, however, been very little work done to investi-
gate if a transformer network would perform better than a
convolution network in ECG processing. This paper seeks
to bridge this gap by presenting an approach that harnesses
the power of attention in ECG signal classification. The
motivation behind this approach arises from the recogni-
tion that the use of local self-attention mechanisms tai-
lored to the unique characteristics of ECG signals could
unlock new opportunities for improving classification ac-
curacy and efficiency.

The paper introduces a novel method which is called
“local lead-attention”, which is designed explicitly for the
ECG domain. This method allows our model to capture
crucial features within a single lead and generalize its
learning across multiple configurable leads. The findings
presented in this paper show the untapped potential of self-
attention models in medical signal analysis and demon-
strate the significance of domain-specific adaptations to
maximize their effectiveness.

2. Methods

This section explains our model architecture and our in-
tuition behind this approach.

2.1.  Architecture

To solve the problem of multi-class classification of ar-
rhythmias with over 26 different classes in the PhysioNet
Challenge 2021 [2, 7], we propose a novel architecture
where the core processing module, the Local Self Atten-
tion, is based on the LongFormer [8] model from the NLP
space. We adapt this model for time series analysis due
to its smaller parameter size and its ability to give global
context in every layer of the model.

The analysis of ECG signals does not require a global

Page 1 ISSN: 2325-887X DOI: 10.22489/CinC.2023.221



context. Most arrhythmias can be determined from a single
beat or the R-R intervals alone. Thus, a pure transformer
network, which gives coarse local and fine-grained global
interactions at every layer is not suitable for efficient sig-
nal classification, as seen from the top contenders of this
challenge where they all use convolution-based models. In
the proposed architecture, we mitigate this problem and
use the established self-attention block to only process data
points in a predefined kernel size. This would then work
as a sliding window with a stride S to process all the fea-
tures in a particular layer. This way, the network achieves a
combination of the attention mechanism as well as the con-
volution architecture which is meaningful for a task like
ECG signal processing. The global context is achieved in
the later layers of the network where the features are short-
ened, similar to a convolution network as shown in Fig.1.
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Figure 1. Local-Lead Attention with fixed window size

The work done by the winning solution of the ISIBrno
Team [3] uses a 2D convolution algorithm for the various
leads in the ECG signal. This model treats the individual
leads as a separate entity till the final layer of the model
after which the features from all the leads are aggregated.
In our model, while we have a separate computation block
with separate weights for each lead, we allow cross-talk
between the leads inside the sliding window to learn fea-
tures from the rest of the leads. In Fig. 1, all the high-
lighted boxes in a specific layer influence each other to
learn lead-specific as well as lead-invariant features. This
hypothesis is due to the fact that some arrhythmias are
much more noticeable in some leads than other, thus we
allow aggregation of features at every layer to learn these
independencies as well as save on computation.

Local Lead-Attention: The core of a Transformer is
self-attention. We briefly introduce the key idea to make
the paper self-contained. Concretely, self-attention com-

putes a weighted average of features with the weight pro-
portional to a similarity score between pairs of input fea-
tures. The Transformer network takes Z° as input. Given
79 € RT*P with T time steps of D dimensional features,
7 is projected using W € RP*P Wy € RP*P7 and
Wy € RP*Px to extract feature representations (), K, and
V', referred to as query, key, and value respectively with
Dy, = Dy. The outputs @), K, and V' are computed as:

Q=7'Wq, K=Z'Wg, V=ZWy. (1)

The output of self-attention is given by:

QKT>
S = softmax V, 2)
(75,

where S € RT™*P and the softmax is performed row-
wise. A multi-headed self-attention (MSA) further adds
several self-attention operations in parallel. A main ad-
vantage of MSA is the ability to integrate temporal con-
text across the full sequence. However, this comes at
the cost of computation. A vanilla MSA has a complex-
ity of O(T?D + D*T) in both memory and time, mak-
ing it inefficient for long videos. There have been sev-
eral recent works on efficient self-attention [9]. In this pa-
per, we adapt the local self-attention from [10] by limiting
the attention within a local window. Our intuition is that
the temporal context beyond a certain range is less help-
ful for ECG Classification. Such local self-attention sig-
nificantly reduces the complexity to O(W?2TD + D?T),
where W is the local window size (< T'). Notably, lo-
cal lead self-attention is used in conjunction with mul-
tiple leads Z = {L',L?,...,L'2} with each lead fea-
ture contains multi-scale feature representation L! =
{ZY, 7%,z . L2 = {ZY,7%,...,Z )}, main-
taining the same window size across each pyramid level.
With this design, a small window size on a downsampled
feature map covers a broad temporal range as shown in Fig.
1.

The final model architecture is shown in Fig.2. We
initially project the N-Lead ECG signals using a shal-
low strided depthwise separable convolution block with-
out overlap between the leads. This strided block is pri-
marily used to shorten the ECG length before the attention
module. The use of depthwise separable convolution [11]
can be attributed to the parameter and computational ef-
ficiency, and more importantly, to reduce overfitting and
introducing convolutional bias earlier on in the network.

The main block is the transformer encoder, which in-
cludes our novel local lead-attention block and also a
strided version of this for down-sampling the signal.
The final features are aggregated with a multi-head self-
attention block with a global receptive field to aggregate
attention across all the leads and time steps.
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Figure 2. Proposed Model Architecture

2.2. Loss Functions

For the loss function, we used the constant weighted
binary cross-entropy inspired via asymmetric loss (ASL)
[12] similar to the work by Han et al. [4] that achieved
good generalization ability. ASL is a method designed to
tackle the inherent imbalance between positive and nega-
tive classes commonly encountered in multi-label classifi-
cation tasks. It achieves this through the incorporation of
asymmetric focusing and asymmetric probability shifting.
The ASL formula is defined as follows:

ASL — { —(1—p)*loglp), ify=1 o

—(pm)?~ log(l — py,), otherwise.

Here, p represents the model’s output probability, p.,
signifies the shifted probability and v+ and y— are posi-
tive and negative focusing parameters, respectively.

For practical implementation, we simplify the approach
by setting the positive focusing parameter, v+, to zero.
We then conduct an exploration of a constant coefficient
for the negative component, taking into account the opti-
mal values of the negative focusing parameters, y—, and
the shifted probability, p,,. In our experimental setup, we
assign a value of 0.1 to the negative coefficient, which ap-
proximately aligns with the positive-to-negative class ratio
present throughout the dataset.

2.3. Model Training

The model is developed in PyTorch and has been trained
for 100 epochs on an NVIDIA GeForce RTX 3090 GPU.
The network is optimized through hyperparameter search
and the values of the batch size are set to 16 with a learning
rate of 0.0001 and a weight decay of 0.0001.

The data preprocessing pipeline involves several steps.
Firstly, the provided data is expanded into a fixed 12-lead
configuration, and any missing leads are padded with ze-
roes, resulting in a consistent matrix size of (12, time).
Subsequently, resampling is applied to adjust the data
to a uniform sampling frequency of 500 Hz, utilizing
polyphase filtering when the original frequency is 1000 Hz
or the FFT method for other cases. To enhance data quality,
a zero-phase method with a 3rd-order Butterworth band-
pass filter is employed, focusing on frequencies between 1
Hz and 47 Hz. Each ECG channel is subject to z-score nor-
malized Data is zero-padded to a length of 8192 samples in
the time domain, and if the signal exceeds this length, ran-
dom sampling and cutting are performed to fit the required
dimensions. Finally, during the training phase, a lead con-
figuration is randomly selected (e.g., 12, 6, 4, 3, 2), with
unused leads filled with zeros to augment the dataset for
improved model generalization.

3. Results

We split the available data from the PhysioNet Chal-
lenge 2021 into a training and test dataset and performed
our analysis here, due to the unavailability of the challenge
test set. We set the random seed for the split to improve re-
producibility and also have the same split for testing other
solution winners. To have a reliable benchmark with the
same data split, we retrain the winning solution of the
challenge [3] with the same hyper-parameters. The results
in Table 1 show the superior performance of our model,
with a 5.3%, 6.61%, and 5.6% increase in AUPRC, AU-
ROC, and F1 scores, respectively. This is achieved with
the model size being 63% smaller than the previous state-
of-the-art methods.
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Method AUPRC | AUROC | F-Measure | Model Size
ISIBrno [3] 0.901 0.514 0.493 6.5M
Local Lead-Attention (this work) 0.949 0.548 0.521 2.4M

Table 1. Results of the Challenge

4. Conclusion

ology challenge 2021. In 2021 Computing in Cardiology

Our research aimed to address the challenge of multi-
class classification in ECG signals, where the global con-
text may not be as crucial as in other domains. We in-
corporated a local lead-attention block that processes data
points within a predefined kernel size, effectively combin-
ing the benefits of attention mechanisms and convolutional
architectures for efficient signal classification.

The concept of local self-attention, which allows the
network to focus on relevant information within a limited
context, aligns well with the nature of ECG signals. Most
arrhythmias can indeed be determined from local patterns,
such as individual beats or R-R intervals, making the effi-
cient processing of these local contexts highly effective.

Our model achieved remarkable results, with an F1
score of 0.521 on the challenge’s validation set, marking
a 5.67% improvement over the winning solution. No-
tably, this superior performance was accomplished with
only one-third of the total parameter size, highlighting the
efficiency of our approach.
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